I’m not sure what you mean by “locality of reference”. I assume you mean something other than the traditional meaning regarding how processors access memory?
Anyway, it’s often been said (half-jokingly) that Haskell is a nicer imperative language than imperative languages. Haskell gives you control over what executing an “imperative” program actually means in a way that imperative languages don’t.
To give a concrete example: we have a custom monad type at work that I’m simply going to call Transaction
(it has a different name in reality). What it does is allow you to execute database calls inside of the same transaction (and can be arbitrarily composed with other code blocks of type Transaction
while still being guaranteed to be inside of the same transaction), and any other side effects you write inside the Transaction
code block are actually collected and deferred until after the transaction successfully commits, and are otherwise discarded. Very useful, and not something that’s very easy to implement in imperative languages. In Haskell, it’s maybe a dozen lines of code and a few small helper functions.
It also has a type system that is far, far more powerful than what mainstream imperative programming languages are capable of. For example, our API specifications are described entirely using types (using the servant library), which allows us to do things like statically generate API docs, type-check our API implementation against the specification (so our API handlers are statically guaranteed to return the response types they say they do), automatically generate type-safe API clients, and more.
We have about half a million lines of Haskell in production serving as a web API backend powering our entire platform, including a mobile app, web app, and integrations with many third parties. It’s served us very well.
I’m not sure if I entirely follow, but in general you actually have much better locality of behavior in Haskell (and FP languages in general) than imperative/OOP languages, because so much more is explicitly passed around and immutable. Monads aren’t an exception to this. Most monadic functions are returning values rather than mutating some distant state somewhere. Statefulness (or perhaps more precisely, mutable aliasing) is the antithesis of locality of behavior, and Haskell gives you many tools to avoid it (even though you can still do it if you truly need it).
I’m not really sure what you mean by “don’t really know what’s in it after a while”. It might be helpful to remember that lists are monads. If I’m passing around a list, there’s not really any confusion as to what it is, no? The same concept applies to any monadic value you pass around.
I think you might have misunderstood what I was describing. The code we write doesn’t actually change, but the behavior of the code changes due to the particular monad’s semantics. So for example, let’s say I write a query that updates some rows in a table, returning a count of the rows affected. In this
Transaction
code block, let’s say I execute this query and then send the returned number of rows to an external service. In code, it looks like the API call immediately follows the database call. To give some Haskell pseudocode:example :: Transaction () example = do affectedRows <- doUpdateQuery doApiCall affectedRows return ()
But because of how
Transaction
is defined, the actual order of operations whenexample
is run becomes this:BEGIN;
to DBdoUpdateQuery
COMMIT;
to DBdoApiCall affectedRows
. Otherwise, do nothingIn essence, the idea is to allow you to write code where you can colocate your side-effectful code with your database code, without worrying about accidentally holding a transaction open unnecessarily (which can be costly) or firing off an API call mistakenly. In fact, you don’t actually have to worry about managing the transaction at all, it’s all done for you.
I mean, you’re not going to be using an SQL database most likely for either of those applications (I realize I assumed that was obvious when talking about transactions, but perhaps that was a mistake to assume), so it’s not really applicable.
I also generally get the impression that you have a notion that Haskell has some special, amorphous data-processing niche and doesn’t really get used in the way other languages do, and if that’s the case, I’d certainly like to dispel that notion. As I mentioned above, we have a pretty sizeable backend codebase written in Haskell, serving up HTTP JSON APIs for a SaaS product in production. Our APIs drive all (well, most) user interaction with the app. It’s a very good choice for the typical database-driven web and mobile applications of businesses.
Ironically, I actually probably wouldn’t use Haskell for heavy data processing tasks, namely because Python has such an immense ecosystem for it (whether or not it should is another matter, but it is what it is)… What Haskell is great at is stuff like domain modeling, application code (particularly web applications where correctness matters a lot, like fintech, healthcare, cybersecurity, etc.), compilers/parsers/DSLs, CLI tools, and so on.*